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Abstract-An examination is made of the conduction between sliding solids with heat energy generated 
along the region of contact. Based on a Green’s function formulation, a Fredholm integral equation of the 
first kind is derived and an asymptotic solution for the heat flux partition to each solid is obtained for 
large Peclet numbers. By introducing further asymptotic approximations, closed-form expressions are 
derived for the temperature fields in the solids. Comparison with a numerical solution indicates that the 
asymptotic solutions are valid for Peclet numbers greater than ten, which covers most cases of practical 
interest. In addition, an examination of the present solution reveals the inadequacy of the empirical 
relations deduced by earlier workers for the estimation of the thermal penetration into the solids. An 

appropriate parameter for this correlation is suggested. 

I. INTRODUCTION 

NUMEROUS mechanical processes involve a solid slid- 
ing over another with heat energy generated within 
the contact region. In most cases, the heat transfer 
around the contact region may be studied by exam- 
ining the steady-state thermal exchanges between two 
semi-infinite moving solids with plane boundaries 
which are perfectly insulated except at the contact 
region. Two aspects are of special importance in this 
analysis : partition of the heat energy into each body 
and the resultant temperature fields in the bodies. 

The Peclet number, which depends on the thermal 
properties and speeds of the solids, and on the contact 
length, is the major non-dimensional parameter 
governing the heat transfer mechanism in this system. 
For very high speeds (hence large Peclet numbers), it 
has been shown [I] that, in the context of strip rolling, 
the problem can be further reduced to one of transient 
one-dimensional heat conduction in stationary 
bodies, i.e. the thermal diffusion term in the direction 
of the motion is small compared to the advective 
component. The solution [l] obtained in this sim- 
plified model, however, only provides results within 
the contact region, and no information can be derived 
prior to and beyond the contact region. 

Most of the other investigations which considered a 
two-dimensional heat flow in moving bodies involved 
approximations in predicting the partition of the heat 
energy to the bodies. Early studies were reported by 
Blok [2] and Jaeger [3] who expressed the surface 
tem~ratur~s of each solid in terms of the surface heat 
flux using a Green’s function formulation. Instead of 
determining the heat flux partition by matching the 
surface temperatures of the solids at all points along 
the contact region, they estimated an overall heat 
flux partition by matching either the maximum [2] 
or average [3] surface temperatures of the solids in 

addition to assuming a uniform heat flux distribution 
to each solid. In these studies, the heat source was 
assumed to be stationary with respect to one of the 
solids. This same problem was later extended to con- 
sider a moving heat source with respect to both 
solids, with the heat flux partition determined numeri- 
cally by matching the surface temperatures of the 
solids using collocation [4,5]. 

On the other hand, in the context of thermal dam- 
ages induced in the grinding process, the temperature 
field in a moving solid with surface heat flux confined 
to a finite region has been examined. Nearly all wor- 
kers have used the Green’s function of the tem- 
perature field proposed by Jaeger [3] as a starting 
point. In most cases, numerical integration was per- 
formed to determine the entire temperature field with 
the heat flux distribution assumed to be uniform (e.g. 
Takazawa [6]) although other distributions have also 
been examined ]7]. Empirical expressions have been 
deduced from the numerical results 16, 71 as a means 
of rapid evaluation of the peak temperatures and ther- 
mal penetration into the solid. This approach has been 
widely accepted in evaluating the thermal effects in 
grinding [8-121. 

Barber, in a recent paper 1131, discussed the effects 
of a difference in the bulk temperatures of the solids 
as well as the subsurface heat generation within the 
contact region. The analysis was also extended to the 
case of multiple contacting areas. 

More recently, an asymptotic solution was 
developed in refs. [ 14, 151, for large Peclet numbers, 
for a system of sliding bodies in contact as discussed 
above (with no heat generation along the contact), 
where the bulk temperatures of the solids are different. 
The partitioning of the heat flux to each solid was 
deduced [14] and expressions for the resulting tem- 
perature fields of the solids were obtained 1151. 

In this paper, the thermal exchanges between two 
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NOMENCLATURE 

f (4 d T, (x, O)/aY, equation (I 5) 

f”(x), f,(x), functions defined in 
equation (24) 

gJx),g,(x) functions defined in equations 
(17) and (32) 

g*(n) function defined in equation (46) 

W WI integral defined in equation (13) 
Ii,[f (x)], . . , I,,[f’(x)] integrals defined in 

equations (19)-(22) 
k thermal conductivity 

k, ratio of thermal conductivity of 
body 2 to that of body 1, k,/k,, 
equation (10) 

1 contact length 
P Peclet number, $‘l/cc, equation (3) 

P, ratio of Peclet number of body 1 to 
that of body 2, P,IP,, equation 

7-Z 
V0 

X,Y 

x0, Y0 

X, 

X,(Y) 

temperature attained at a depth, y, 
from the surface of body i 

bulk temperature 
speed 
Cartesian coordinate pair, 
nondimensionalized with the 
contact length, I 

Cartesian coordinate pair, Fig. 1 
x-coordinate at which the 
temperature change on the body 
surface within the contact region is 
a maximum, equation (39) 
x-coordinate at which the 
temperature change at a depth, Y, 
from the surface is a maximum, 
equation (54). 

40 

qO(xO) 

r 

T(x> v) 

T”(xo, Y”) 
T rm 

Tt,S Y) 
T;(Y) 

(28) 
intensity of the non-dimensionalized 
uniform heat flux generation 
along the contact 
non-dimensionalized heat flux 
generation along the contact, 
equation (11) 
heat flux generation along the 
contact 
P(.x2+y’)‘.‘2, equation (44) 
dimensionless temperature change, 
(To- Ti)/Ti, equation (1) 
temperature 
maximum non-dimensionalized 
temperature reached on the 

surface of body i, equation (38) 
(T(t- Ti)/Tg, equation (56) 
maximum 

Greek symbols 

;JM2 

thermal diffusivity 

terms defined in equations (27), (34) 
and (35), respectively 

&It&Z small terms defined for integrals of 
equations (19)-(22) 

WY) :Py’/x, equation (51) 

0 polar coordinates defined by 
equations (41) and (42) 

*i(-? Y) temperature, T;(x, y), of body i, as a 
fraction of its maximum 
temperature, T,,, equation (37). 

Subscripts (unless defined above) 
1 body 1 
2 body 2 
i body i. 

semi-infinite solids with heat generation at the contact 
region are examined. A more formal approach in 
determining the heat flux partition is formulated and 
the temperature fields in the solids are evaluated. This 
analysis, although developed in the context of strip 

Body 1 

Perfect 
insulation 

rolling, also finds applications in other areas such as 
thermal considerations in grinding, machining, and 

highly loaded gear teeth, cams and tappets. dong contact 

Body 2 

2. PROBLEM FORMULATION ‘- 

Consider two moving semi-infinite solids with plane 
boundaries being in perfect contact over a fixed finite FIG. 1. Thermal system under study. 

region. Let the x0-axis be aligned with the plane of 
contact and the solids be moving at uniform speeds, is generated, as shown in Fig. 1. It is assumed that 
up and vy, respectively, in the x0-direction. The origin there is no thermal variation in a direction normal to 
of the Cartesian coordinate system (x0-y”) is selected the x0-y” plane and thus a two-dimensional analysis 
at the leading edge of the contact region (0 < x0 < I, may be adopted. 
where 1 is the contact length), along which heat energy The temperature fields in the two bodies may be 



Heat conduction in sliding solids 639 

written in terms of their temperature gradients (with 
respect to y”) along the contact region based on a 
Green’s function formulation [3, 141, thus 

Ti(X,Y) = 
7’; (x, Y) - T:: 

To 

R 

=fl s ’ aTi@‘, 0) p(x-x.) 

710 aye’ 
x Ko{Pi[(x-x’)* +y2]“*} dx’ (2) 

where 

$1 

pi = K 
I 

X0 
xc- 

1 

(3) 

and 

y=q. (5) 

Here subscript i = 1, 2, and the upper and lower signs 
in equation (2), refer to bodies 1 and 2, respectively ; 
T,?(x,y) is the temperature of body i; Tg the uniform 
bulk temperature of the bodies ; Pi the Peclet number 
based on half the contact length ; cli the thermal diffu- 
sivity and K,( ) is the modified Bessel function of the 
second kind. 

The boundary conditions, in their non-dimen- 
sionalized form, are 

T,(-a,y) = 7-,(-~,y) = 0 (6) 

dT, (x, 0) 3T2(x, 0) 

ay 

= ~ = 0 
ay 

for x < 0, x >l (7) 

T,(x, 0) = T,(x, 0) for 0 < x < 1 (8) 

aT,(x,o) +k aT*(x,o) 
-7 ~ = q(x) r ay for 0 < x < 1 

where 

(9) 

(10) 

and 

k7”(x0) 
q(x) = k 

I R 
(11) 

Here ki is the thermal conductivity of body i, and 
q”(xo) is the rate of heat generation (per unit area) at 
the contact region. 

The boundary conditions of equations (6) and (7) 
stipulate that the body temperatures are equal to the 
bulk temperatures far upstream and that the surface 
along y = 0 is insulated outside the contact region ; 
these are satisfied by equation (2) implicitly as a result 
of a proper choice of Green’s function. Those of equa- 
tions (8) and (9) specify the conditions of continuity of 
temperatures along the contact region (perfect contact 

assumed) and conservation of heat fluxes, respec- 
tively. 

3. HEAT FLUX ALONG 

THE CONTACT REGION 

On elimination of aT,(x, oyay from equations (2), 
(8) and (9), a Fredholm integral equation of the first 
kind in the unknown function aT, (x, O)/ay is obtained 

I, [f(x)] + $Z,[f (x)] = - k o’ q(x) ep2(r-.Y’) 
r I 

xK,(P,lx-x’l)dx for 0 < x < 1 (12) 

where 

ZJf(x)] = 
s 

f(x’) ep~(X-X’) Ko(Pjlx -x/l) dx’ (13) 
0 

and 

= 
s 
d f(x-u) ep+’ K,(P,u) du 

+ 
s 

I--x 
f(x+~) e-P~“Ko(Piu) du (14) o 

a T, (x, 0) 
f(x) = 7’ (15) 

If the heat generation may be assumed uniform, i.e. 
q(x) = qo, the right-hand side of equation (12) may 
be integrated readily, giving 

Z, UWI + ~~‘[/(x)l = so(x) for 0 < x < 1 
r 

(16) 

where 

go(x) = - p {xeP2x[Ko(P2x+K,(P2x)] 

+(;-x)em-” [Ko(P,(l-x)) 

-K,(P,{l -x1)1). (17) 

An asymptotic solution of f(x) will be derived below 
for large Peclet numbers, P, and P2 (the Peclet num- 
bers are in the range of 4000 to 60000 in the case of 
strip rolling). The kernel of the integral I,() consists 
of the modified Bessel function which, although being 
singular at x’ = x, decreases rapidly to zero when 
x’ # x for large P,. Thus, a solution which is valid for 
regions away from the leading and trailing edges of 
the contact region (i.e. P+x and Pi( 1 -x) x 1) is firstly 
sought and the correction terms for the small leading 
and trailing edge regions are then examined. 

Consider the region E, << x << (1 -.Q, where 0 < (cl, 
E*) << 1 but Pi&, and Pie, >> 1 (i = 1, 2). Following ref. 
[14], the integrals of equation (14) may be divided up 
as follows : 

w(x)l = Ii, V(x)1 + L[f(x)l + MI-(x)1 + ~df(x)l 

(18) 
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where 

s ‘/ 

Z,,[f’(x)] = f(x-u)e”K,(P,u)du (19) 
0 

r 
Z&‘(x)] = 

s 
.f(x-u) e@ K,(Piu) du (20) 

ci 

s c, 

Zj3 [f(x)] = _ ,f(x+u) eePI” KO(Piu) du (21) 
0 

and 

IL, 

~iu(x)l = 
s. 

,f(x+u) em’,’ K,,(P,u) du. (22) ,,, 

It is shown in ref. [14] that, for Pie, and Pt.z2 >> 1, the 
sum of Zi,[f’(x)] and Z,,[f(x)] consists of E,- and E*- 
dependent terms only. Thus, equation (16) reduces to 

Z, *V(x)1 +~,‘u(x)l + $ {I**[J’(x)l 
r 

+ I,,[fWl} = g,(x) + 6 ,, h-terms. (23) 

Now, let 

where 

.f‘ (-u) = f&) + .f, (x) + f;(x) + (24) 

f;(x) = o[f;_ ,(x)1 for i = 1,2,3,. . (25) 

By expanding asymptotically the Bessel functions in 

Zi2[,f(x)]. Z,Jf(x)] andg,(x) for large arguments, and 
retaining only the leading order terms, equation (23) 
becomes 

s r fo(x-u) 
TdU = -2px”‘+s,-terms (26) 

1, 

where 

p= q” 
1 + k,P,!” 

and 

P’=g. , 

(27) 

Now, provided that the integral of equation (26) is 
integrable at the origin, it may be written as the differ- 

ence between an integral of the integrand from 0 to x 
and one from 0 to E,, the latter obviously consisting 
only of &,-dependent terms which must cancel out 
with those on the right-hand side of equation (26), 
thus 

s “Jo(x-u) 
u”“du = -~/IX’!’ (29) 

0 

which may be solved readily, giving 

Jo(x) = -B. (30) 

Hence the leading order term of the heat flux to solid 

1 along the contact region is a constant, signifying 
that a uniform heat energy generation would result in 
a largely uniform heat flux distribution to the two 
bodies. This result, obtained through a rigorous 
asymptotic analysis, agrees with that suggested by 
Blok [2] and Symm [5] who matched only the 
maximum surface temperatures of the solids. 

The integral equation for the higher order of f(x) 
may be obtained by substituting equation (30) into 
equation (16) and retaining the leading order terms 

of the resultant equation, giving 

Z, [J’, (x) + f*(x) + .I + ; Z*[f, (4 
r 

+,f2(x)+...]=g,(x) for O<x< 1 (31) 

where 

g,(x) = B{xe’l”[Ko(Plx)+K,(P,x)l 

+(1-x)e-‘l(‘~“)[K,(P,{l-x}) 

-KC,{1 -x1)11 

-K,(P2{1 -x))l). (32) 

It is obvious from the integral equation (31), which is 
valid for the entire contact region, and the definition 
of g,(x) that fn(x) 3 0, for n = 1,2,3,. . . , when 
P, = 1, i.e. fo(x) is an exact solution of equation (16) 
as long as the Peclet numbers of the solids are iden- 
tical. In addition, it may be shown that g,(x) is at least 
O(P; I!‘) of go(x), except in regions very close to the 
entry zone with P, >> 1. In view of the application 

intended in this analysis where P, and P2 are large and 
P, does not normally vary significantly from unity, the 
correction term contributed from g,(x) is not further 
examined here. 

A numerical scheme, which solves an integral equa- 
tion of the form of equation (12) with a general right- 
hand side function, has been devised [ 161 to study heat 
conduction in sliding bodies with more complicated 
heat source distributions. Here, the heat flux to solid 
1 calculated from equation (30) is compared with 
the numerical solution in an attempt to examine the 
regions of validity of the asymptotic solution. It can 
be seen from the illustration given in Fig. 2 that the 
two solutions yield excellent agreement when the 
Peclet numbers of the solids are equal. When P, # P,, 
deviations of the asymptotic solution from the 
numerical solution are observed, especially around 
the leading and trailing edges of the contact region. 
These deviations increase as the Peclet number, P,, of 
solid 1 becomes small, when the ratio of the Peclet 
numbers, P,/P,, is small or when the ratio of the 
thermal conductivities, k,, is large. For the application 
intended, where P, and P2 are large and k, and P, are 
of order unity, the asymptotic solution of equation 
(30) is considered satisfactory. In addition, the small 
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FIG. 2. A comparison of the asymptotic solution with the 
numerical solution for the heat flux to solid I. 

deviations for the heat flux near the edges of the con- 
tact region would not cause significant errors in the 
subsequent evaluation of the temperatures in the 
solids, as will be illustrated in the next section. 

4. TEMPERATURE DISTRIBUTION 

4.1. Temperatures along the surfaces 
The leading order of the heat flux distribution to 

body 1, Jo(x), along the contact may be substituted 
into equation (2) in order to evaluate the temperature 
fields of the bodies. The integral in equation (2) cannot 
be evaluated analytically in general, but expressions 
for the surface temperatures (y = 0) may be derived 
readily, giving 

,- 
Bi(lxle-P~~‘[~I(Pil~I) -&(Pilxl)l 

- (1 + 1x1) e-P,(‘+lxl)[K,(Pi{ 1 + Ixl}) 

-K,(P,(l+Ixl})]} for x < 0 

/?i{xePW,(P,x) + K,(P,x)] 

T~(~,(-J) = d +(I -x)e-p~(‘-X)[KO(P,{l -x>) 

- K,(P,{ 1 -x})]} for 0 < x < 1 

Pi{, ePp VW’& + K, (pix)l 

-(x- 1) eprCx- ‘)[K,(Pi{x- l}) 

+K,(P,{x- l})]} for x > 1 (33) 

where 

(34) 

and 

82 _ PP:” _ %P:‘2 
rc ~(1 +k,P,‘j2) ’ (35) 

Here K,() is the modified Bessel function of the 
second kind of first order. 

For regions remote from the leading and trailing 
edges of the contact (more precisely, when PJxl and 
PiI1 -xl >> I), equations (33) may be further simpli- 
fied, giving 

A yy I( ) 2P, 2P,lxl 
“2 em ZPJr, 

for P&C< -1 

2xx “2 
T,(x, 0) = < 43 1 p for P,x >> 1 ; P,( 1 -x) >> 1 

2n “2 

0 ’ p, 
[x “‘_(x-1)‘:2] 

I for Pi(x - 1) >> 1. (36) 

A comparison of the analytical solution of equations 
(33) with the numerical solution of ref. [16], as shown 
in Fig. 3, produces excellent agreement for a wide 
range of k, and P, values as long as the Peclet numbers 
are reasonably large. In this illustration, the non-dimen- 
sionalized surface temperature has been normalized 
with respect to the asymptotic peak temperature (also 
known as the flash temperature [17] in the context of 
scuffing and wear), Ti,,,, thus 

(37) 

where 

I/2 

T, = j$ (38) 

such that Gi < 1. It can be seen that the peak tem- 
perature on the surface is located near the trailing 
edge of the contact region when the Peclet number is 
large, and that it shifts back towards the centre of the 
contact region as P, is reduced to unity, with its value 
being smaller than the asymptotic prediction. Hence 
equations (33) (and equations (36) when applicable), 
which provide closed-form expressions for the surface 
temperatures of the solids, are valid for most appli- 
cations. The peak temperature in the solid, T,,, can 
be shown to occur on the body surface within the 
contact region, thus it can be readily evaluated from 
equations (33) after its location, x,,,, is determined. It 
is found, by setting Ui(x, 0)/8x = 0 in the second of 
equations (33), that x, is the solution of the equation : 

eP, K,(Pix,) = K,[P,(l -x,)1. (39) 
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FIG. 4. Variation of (a) the location, x,, of the peak tem- 
perature on the surface, and (b) the associated value, 

T,(x,, 0), with the Peclet number, P,, of the solid. 

A pIot of the variation of x, with P, and the associated 
peak temperature is shown in Fig. 4. When the Peclet 
number is extremely small (note that in this case P, 
should be very close to unity for the solution to be 
valid), the maximum temperature occurs at the mid- 

X s ‘exp[-2r;sin’(f8)/(1-u)] 
-. ““. “________ 

(1 -7 -----du (47) 
0 

which can be integrated after a substitution w = 
point ofthe contact with a vafue well below the asymp- (I- u)- * is made, giving 

D. Y~JEN 

totic prediction. As P,increases, x, moves towards the 
trailing edge and the asymptotic value is approached. 
This observation has also been discussed by previous 
workers [e.g. Jaeger [3]). 

4.2. TemperatureJield of the entire body 
The temperature field of body i, based on the lead- 

ing order of the heat flux distribution, j’(x), is, from 
equation (2) 

x Ko{P,[(x-x’)Z+y”]‘i23 dx’. (40) 

Approximations to the above integral are now in- 
troduced in the various regions in order to obtain 
closed-form expressions. In view of the insi~j~can~ 
temperature change prior to the contact region 
(x < 0) for large Peclet numbers (Fig. 3), details of 
the temperature in this region will not be sought here. 

(a) Within the contact region (0 < .Y -=z 1). Let 

s = pcoso (41) 

and 

y = p sin 0 (42) 

such that 0 < I@ C in and the temperature field is 
then given by 

where 

x K,,[r,(u*-2ucos&+ l)“*]du (43) 

ri = P&I (44) 

and 

p = (xz+_y2)‘!z” (45) 

Reference [t5] has shown that since r, is generally 
large and i@j CC 1 in the region of interest (the thermal 
~ene~ra~~on in the ),-direction is of the order of P;- ‘j2 
[I J), the integrand in equation (43) may be approxi- 
mated by 

“‘exp[-2r,sin’(18)/(1-rc)] --,_-._______II ___. - --.. 
(1 -u) I!* 

?hCul = 
for 0 c Ii < I (46) 

0 for u > 1. 

Thus 
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‘12 

T&Y) = di 0 g ierfc [2P,p sin2 (‘,@I ‘j2 (48) 

where ierfc() is the repeated integral of the error func- 
tion. 

In the region of interest, 1 y( <(: x and equation (48) 
can be further simplified, giving 

The above solution agrees with that of ref. [I ] in which 
the thermal diffusion along the direction of body 
motion is ignored. It is also noted that equation (49) 
degenerates to equation (36) 2 when y = 0. 

(b) Beyond the contact region (X > I). For regions 
away from the trailing edge of the contact 
(P,(x- 1) >> I), the modified Bessel function in the 
integral of equation (40) may be expanded for large 
argument, and in the region of interest (I yl CC x) with 
Pi >> 1, the integrand may be approximated and equa- 
tion (40) is reduced to 

where 

(51) 

The integral in equation (50) may be readily evalu- 
ated, giving 

T;(x,y) = a& ;I 
‘12 

(;)[ ierfc (t!/“) 

- (+r2 ierfc (&-&r*]. (52) 

It is obvious that equation (52) degenerates to equa- 
tion (36j3 when y =0 (thus <, = 0). In addition, it 
agrees with equation (49) at the traiiing edge of the 
contact region (x = I). 

The entire temperature field as calculated from the 
asymptotic solutions (equations (48) and (52)) has 
been compared and found to agree weil with the 
numerical solution of ref. 1161 for a wide range of k, 
and P, values and for Peclet numbers reduced to as 
low as 10. An illustration of the comparisons is given 
in Fig. 5. For low Peclet numbers, slight deviations 
are observed at the leading and trailing edges of the 
contact region. These arise since the thermal diffusion 
in the x-direction becomes important when the Peclet 
numbers are small (the diffusion term becomes sig- 
nificant compared to the advective term in the regions 
0 G Plxl < O(1) and 0 < PI1 -xl < U(l), respec- 
tively) . 

The comparison shown in Fig. 5 also reinforces the 
suggestion made earlier that, for high Peclet numbers, 
retention of only the leading order term of the heat 

((I) Within the contact region (see port (b) for 
legend). 

Numerical results: 

x 

(b) Beyond the contact region. 

FIG. 5. A comparison of the analytical solution with the 
numerical solution for the temperatures in the body 

(P, = P, = P). 

flux distribution to the bodies is sufficient in cal- 
culating the temperature field. 

Of interest is the thermal penetration below the 
surface of the solids. It has been demonstrated earlier 
that the surface temperature reaches a maximum 
within the contact zone and its location approaches 
the trailing edge (x = 1) when the Peclet numbers are 
large. From Fig. 5, it is obvious that the maximum 
temperature that a point at a specified depth below 
the surface would reach will be located beyond the 
contact region when the Peclet number is large. This 
location, xp, may be detained by ending, for a given 
y, a local maximum of the temperature with respect 
to x. Thus. from equation (52) 

s= 27i “2 exp(-&) (7) i 

exp 
-$L ( )I x-l 

ax f P, &W - qx_ 1)“2- 

(53) 

which, when set to zero, yields an equation for the 
solution of xp 

x,(Xp--1)ln & 
( > 

= Pg. 
P 

The variations of the maximum temperature and its 
corresponding location with the depth below the sur- 
face are given in Fig. 6. It can be seen that the thermal 
penetration is inversely proportional to P,'j2, thus the 
higher the speed of the solid, the smaller are the ther- 
mal effects (relative to the surface temperature) below 
the surface. 

Similar studies have been carried out in relation to 
the grinding process by other workers. With numeri- 
cal integration of equation (40) assuming a uniform 
heat flux distribution to a solid, empirical expressions 
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FIG. 6. Variation of (a) the location, x,,, of the maximum 
temperature, and (b) the associated value, T,,(y), with the 

depth below the surface, J. 

for the maximum temperatures, T,p, were fitted in 
terms of the Peclet number, Pi, for a specified depth, 
y, below the surface. On writing those results in the 
present notation, we obtain, from Takazawa [6] 

= 3.1(‘,P,)“-53exp[-0.69(~P,))““7(~,y)] 

for 2 < Pi < 160 and 0 < P, y < 4 (55) 

where qp is the rate of heat transfer to body i along 
the contact region, Tg the maximum temperature 
reached, and Tip the non-dimensionalized temperature 

given by 

T,p = 
T;-T: 

T:: (56) 

and, from Maris [7], as quoted by Snoeys et ul. [lo] 

0.66(+Pi)0 y3exp[-0.15(~P,)~0~06(P,y)] 

for 10 < P, < 80 and 4 < Pjy < 10 

0.355(lP,) ’ “I exp[-0.08(fP,)“~““‘(Piy)] 

ST_ =< 
for lO<P,<80 and 10<Piy<20 

B, lP 1.64(;P,)” h7 exp[-O.O288(:P,)” 244(P,y)] 

for 80 < P, < 160 and 4 < Pi,r < 10 

0.079(~P,)‘~43exp[-0.0187(~P,)044(P,y)] 

c for 80<Pi<160 and lO<P,y<20. 

(57) 

Here Tip is the maximum temperature reached for a 
point at a distance y below the surface. In particular, 
the third coefficient in equation (57), has been 
changed to 0.0288, instead of the value of 0.288 as 
quoted by Snoeys et al. [lo], in order for a reasonable 
agreement with the present solution to be obtained. 

The above expressions are also plotted in Fig. 6 
within their regions of validity for comparison, and 
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FIG. 7. A comparison of the empirically derived maximum 
temperatures with those from the asymptotic solution. 

generally good agreement is obtained. The slight dis- 

crepancies observed in these comparisons could be 
largely due to inaccuracies involved in the numerical 
integration and curve fitting by a limited number of 
expressions in the previous works [6, 71. Thus, the 
solution presented here provides a more logical 
approach in estimating the maximum temperature in 
the solid: the location, xp, of the maximum tem- 
perature is determined from equation (54), followed 
by calculating its value from equation (52). Moreover, 
if it were desirable to develop an empirical expression 
for rapid determination of these peak temperatures, 
it is obvious that the peak temperature should be 
related to the parameter P,’ 2y. Only a single 
expression is then sufficient to cover a wide range of 
Pi and y (cf. relations each deduced for a narrow 
region of validity previously [6, 71). One such 
expression is 

= exp [- 1.507P,“2y+0.3610(E’j~Zy)’ 

-O.O446(P;‘*y)’ +0.00208(P,“2y)4] (58) 

for 0 < (P!“y) < 8. A comparison of equation (58) 
with the asymptotic solution is shown in Fig. 7. 
Indeed, excellent agreement is obtained. 

5. CONCLUSION 

The conduction of heat in sliding solids with heat 

energy generation along the contact region is exam- 
ined in this paper. An asymptotic solution for large 
Peclet numbers is derived for the heat flux partition 
to the solids. It is demonstrated that, with a uniform 
heat source, the heat flux partition to the solids is 
essentially uniform and is governed by the parameter 
kP “2 of each solid (where k is the thermal con- 
ductivity and P the Peclet number). 

On introducing further approximations for large 
Peclet numbers, closed-form expressions for the tem- 
perature fields in the solids are deduced. Peak tem- 
peratures at specified positions below the solids are 
also predicted and an appropriate parameter, which 
offers much improvement over those suggested by 
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previous workers, for the correlation of the peak tem- 
peratures is suggested. 

The asymptotic solutions obtained in this paper 
have been checked with a numerical solution, and 
found to be valid for Peclet numbers greater than 10. 
While this study has been carried out in the context of 
strip rolling in which the Peclet numbers are extremely 
high (in the range 4000 to 60000), the solutions can 
also be applied to the examination of thermal effects in 
other relevant processes such as grinding, machining, 
rubbing in gear teeth and cams, in which cases the 
Peclet numbers are usually higher than 10. 
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CONDUCTION THERMIQUE DANS DES SOLIDES GLISSANTS 

R&sum&-On considtre la conduction entre des solides glissants avec la formulation de chaleur le long de 
la surface de contact. A partir de la formulation de la fonction de Green, on obtient une equation integrale 
de Fredholm de premiere espece ainsi qu’une solution asymptotique pour la partition entre chaque solide 
est obtenue pour de grands nombres de P&let. En introduisant des approximations asymptotiques, des 
expressions exactes sont d&iv&es pour le champ de temperature dans les solides. Une comparaison avec 
une solution numerique indique que les solutions asymptotiques sont valables pour des nombres de P&let 
superieur a 10, ce qui couvre la plupart des cas dint&r&t pratique. De plus, un examen de la presente solution 
revtle I’inadequation des relations empiriques dbduites par les premiers chercheurs pour l’estimation de 

la penetration thermique dans les solides. On suggere un parametre approprii pour cette correlation. 

WARMELEITUNG IN UBEREINANDER GLEITENDEN FESTKORPERN 

Znsammenfassung-Es wurde eine Untersuchung der Wlrmeleitung in iibereinander gleitenden Fest- 
kiirpern durchgeftihrt, in deren Kontaktbereich W&me freigesetzt wird. Basierend auf den Green’schen 
Funktionen w&de eine Fredholm-Integralgleichung erster Ordnung hergeleitet und eine asymptotische 
Losung fur den jeweiligen Anteil des Wlrmestroms in die beiden Kikper fiir grol3e Peclet-Zahlen ermittelt. 
DurchEinfiihren zu&zlicher asymptotischer Naherungen wurden Ausdrticke in geschlossener Form fiir 
das Temperaturfeld in den Festkijrpem abgeleitet. Der Vergleich mit einer numerischen Losung deutet 
darauf hin, da8 die asymptotischen Lijsungen ftir Peclet-Zahlen gr6Ber als 10 giiltig sind, was die meisten 
Falle des praktischen Interesses abdeckt. Zusltzlich offenbart eine Uberpriifung mit der vorliegenden 
Losung die Unzulanglichkeit der empirischen Beziehungen, die in vorangegangenen Arbeiten fiir das 
Eindringen von Warme in die K&per hergeleitet wurden. Fiir die Korrelation wird ein geeigneter Parameter 

vorgeschlagen. 
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TEIUIOl-lPOBO~HOCTb TBEPflbIX TEA l-IPki CKOJIbXEHHM 

AHUOTPUJISI-IQoBC~CHO mcnen0BaHHe nepenawi Tenna TennonponomiocTbm Memy TenaMH npe 

CKOnb~eHHB, KOrJ4a B OhaCTH HX KOHTaKTa BblgenleTCK TelIlIOBaK 3HeprHK. C IIOMOIIlbIO MeTOAil 

@yHKUHfi ~pHHaBblBeueHOIlHTerpiUIbHOeypaBHeHHe~~lUOnbMalIepBOrO pOAa,WAJIS 60nbuIHX'fUCen 

IleKne nonyseeo acuMnToTHwcKoe peureeae, onpenennmuee pacnpeneneHHe n0ToKa Tenna B KancnoM 

H3 TeJl. C WCtlOnb30BaHHeM LICHMIITOTH’ECKWX IIp6lH;atCHHit I’IOJi~CHbI B 3aMKIiyTOM BHW BbIpaXWWl 
,n.mn pacnpeneneHH9 TeMnepaTyp B ~nepmx Tenax. CpaBHeHne c sicneHHblh4 perueHHeM noKamBaeT, 

YTO ackimToTHwcKoe 0nHcaHHe cnpasenmino DJIK 3HareHHi 4Hcna lleKne,npeBbuuammx lO,r.e.Tex 

3Haremiti,KoTopbIe9atue ncero BqwiamTcr Ha npaKT5irte.KpoMeToro,aHanH3 nonyveHHoropelueHHn 

n03BOnHn BMIIBHTb HCilJJCKBaTHOCTb PaHCC II~AJIOXEHHbIX 3MIIHpHWCKHX COOTHOLUCHHfi,HCllOJIb3OBaB- 

unixc~ mn 0ueHKH pacnpeneneHHn Tenna B KOHTZIKTH~~~UIHX Tenax. Ann KoppennuHH npenno~efi 

COOTBeTcTBylOLtlHiiIIapaMeTp. 


